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ABSTRACT 
 
This aim of this research was to use a novel method for discriminating between 
Alzheimer's disease from normal controls from brain magnetic resonance imaging. 
Here, the six diverse connecting rules (mean, product, maximum, minimum, and 
voting) related to the consolidation of classifiers. The collection of the relevant 
benchmark data was taken from the Alzheimer's disease neuroimaging initiative 
(ADNI) data set for the proposal evaluation. The empirical investigations uncovered 
the four individual classifiers out of thirteen classifiers, viz BayesNet, linear 
discriminant classifier, quadratic Bayes normal classifier, and kernel support vector 
machine from numerous machine learning groups, gained the highest recognition 
percentages of 74.77%, 71.62%, 77.76, and 76.13%, respectively. These four-best 
performing classifiers were employed for prototyping the classifier fusion model, 
which displayed a much healthier performance with a shared mean error rate of 
0.2123, in contrast to the mean error rate of 0.2493 before ensemble. Our analyses 
have shown that a smart classifier-based fusion method outperforms the base-
classifier method. 
  
Keywords: classifier fusion strategy; pattern recognition; performance evaluation indices; error rates 
 
 

1. INTRODUCTION                                    
 
The increase in the prevalence of Alzheimer's disease (AD) 
from the previous decade has increased the burden to rank 
it seventh globally and costs society approximately $818 
billion in lost output. It is made up of 90% of the population 
over the age of 65, who are among the 50 million 
individuals in the world suffering from dementia (Chien et 
al., 2019). All dementias vary in terms of symptoms and 
disease, and there are more than 600 types of dementia 
that contrast with others, and AD is the most among them 
(Chien et al., 2019). Estimation in 2001 estimated that the 
prevalence of dementia would rise to 42.3 million by 2020 
and hit 81.1 million in 2040 (Tierney et al., 2005). About 
3.7 million people with dementia will cost India around 14.7 
billion US dollars. According to the report, such increases  

will triple the expenditure. 
       Currently, AD is administered using a group of methods 
like the Montreal cognitive assessment (MoCA) (Orimaye 
et al., 2017) and mini-mental state examination (MMSE). 
Out of a total score of 30, a case here is negated to have any 
dementia with an MMSE score of 27 or above (Pozueta et 
al., 2011). The manual approach to these tests makes them 
more difficult because they have a low rate of accessibility 
for AD. As with the intensity of the analysis, the tests, the 
clinician's involvement and ability to analyze the many 
subsets of the illness varies as well. Studies of Alzheimer's 
disease and mild cognitive impairment have discovered, 
such modalities as structural magnetic resonance imaging 
(sMRI), functional MRI (fMRI), flourodeoxy glucose 
positron emission tomography (FDG-PET) and amyloid 
PET, for example, Pittsburgh compound B (PiB-PET), 
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florbetapir, and flutemetamol (Thal et al., 2015). s-MRI has 
the capability to detect more subtle morphological 
alterations in the brain's microstructure than any other 
imaging techniques currently available (Tessitore et al., 
2016). Consequently, this would result in negative 
variations in imaging attributes, and help to contain 
sickness transfer. Also known as diffuse neuronal atrophy, 
the phenomenon of progressive cerebral atrophy can be 
noted by modern MRI technology. In addition, measures of 
cortical volume and cortical thickness have been used to 
gain a better understanding of the overall picture of the 
underlying pathology of AD. 
       sMRI is predominately employed for stokes, blood clots, 
brain tumors or additional aberrations that might account 
for multiple sclerosis (MS) or Alzheimer's because of its 
high-resolution imaging and high brain tissue contrast 
capabilities. Three MR tissue parameters specify the MRI 
scan, e.g., spin-lattice (T1), spin-spin (T2) relaxation times, 
and proton density (PD), which are labelled as T1 weighted, 
T2 weighted, and PD weighted. Under a magnetic field, the 
various subparts of brain-like gray matter (GM), white matter 
(WM), glial matter, cerebrospinal fluid (CSF), fat, muscle/skin, 
display exclusive characteristics. The T1, T2 and PD occupy 
the distribution of the noteworthy tissues of brain-like 
CSF, GM and WM. Subsequently, spatial, along with tissue 
characteristic-based features, can be mined from these MRI 
scans. The manual cataloguing for these bulky tissue volumes 
is not only tedious but non-reproducible. In this manner, the 
advancement of entirely programmed and exact mind 
tissue characterization from MRI in the various disease 
manifestations like tumors, MS, AD and other WM lesions is 
of incredible intrigue. AD tends to be recognized at the 
beginning phase with the assistance of MRI to stay away from 
irreversible harm of the brain with a legitimate treatment 
plan. MRI can represent 'atrophy' – a reduction in the size of 
various different regions of the brain triggered due to the 
degenerative process of brain tissues in rejoinder to a disease 
process like AD (Sadek, 2013).  
       Once thought to be of divine origin, neuroimaging 
disorders have been deciphered by MRI (Papakostas et al., 
2015). Also, electroencephalography has been used as a 
marker for the earlier and early detection of Alzheimer's 
disease in many studies (Sankari and Adeli, 2011). Time 
and effort have been dedicated for earlier diagnosis of 
Alzheimer's disease that has (Varatharajan et al., 2018). 
Numerous studies have focused on the overall power of 
ensemble for early detection (Kumar et al., 2018). The 

features' quality has a direct impact on the classifier's 
predictive capability. Preclinical researchers have made a 
significant contribution to extracting the most relevant 
feature vectors that differentiate between AD subjects and 
healthy individuals (Lahmiri and Shmuel, 2018). Deep 
learning (DL) is nowadays the most trending area and has 
been widely employed in automated neuroimaging 
analysis, particularly the AD diagnosis (He et al., 2019).  
       While these methodologies yield excellent results, 
current application for characterizing clinical information 
has not yet uncovered consistent data. This particular 
methodology has problems because it uses only  
about a few classifiers. Furthermore, they often leave 
unacknowledged factors, such as age and sex, both of 
which have a significant impact on results. To sum up, good 
performance depends on one particularity, while a good 
presentation may need a mix of specifics. It utilized a high-
scale dataset and a complex methodology in this paper. 
This research was laying the groundwork for numerous 
new measurements to be taken, so it was conceivable that 
additional ones would follow. Neuroimaging data 
determined how precisely AD software needed to be made. 
These rules (mean, median, maximum, minimum, and 
voting, and aggregation) were discussed in the report.  
        
 
2. MATERIALS AND METHODS    
 
This work was primarily focused on the Alzheimer's 
disease neuroimaging initiative (ADNI) dataset and feature 
extraction approaches. Statistical analysis in the form of 
mathematical formulae did also occupy the space here, 
which were used for comparison estimations of classifiers, 
like classification accuracy, sensitivity, specificity, area 
under curve (AUC), and error rate.  
 
2.1 Data acquisition 
The proposal was validated using the ADNI database, 
which involved high-resolution T1-weighted s-MRI of 668 
candidates (www.adni.loni.usc.edu). The main goal of its 
launching in 2004 was to gauge the advancement of mild 
cognitive impairment (MCI) and AD, employing various 
neuroimaging modalities, like MRI, PET, other biological 
markers clinical and neuropsychological examinations. For 
this work, a total of 668 subjects in the ADNI2 baseline 
dataset was employed, which consisted of 146 AD cases, 
336 MCI cases, and 186 CN (Table 1).

 
Table 1. Demographic data of 668 subjects in the ADNI2 baseline dataset 

 Male Female Age Min/ Max Age APOE1 APOE2 FAQ 
AD 85 61 74.73±8.15 56/ 90 3.11 3.63 13.39 
MCI 186 150 71.30±7.50 55/ 91 2.94 3.42 02.08 
CN 89 97 73.50±6.25 57/ 89 2.86 3.24 00.16 

Note: APOE is apolipoprotein E and is the chief genetic risk feature for Alzheimer's disease, FAQ stands for functional 
activities questionnaire 
 
2.2 Neuroimage processing and feature extraction 
Initial pre-processing of the raw MRI images was carried 
out with the FreeSurfer image analysis suite, which was 
open-source brain suite software (http://surfer.nmr. 
mgh.harvard.edu). It performed approximately 31 pre-
processing steps like averaging of multiple volumetric T1 
weighted images, removal of non-brain tissue using a 
hybrid watershed/surface deformation procedure, motion 

correction, etc. Cortical thickness (CT), which were the 
average values for each region of grey matter probability 
(GMP), were dug out in the s-MRI case. It was calculated as 
the closest distance from the grey/white boundary to the 
grey/CSF boundary at each vertex on the tessellated 
surface. Individual brain atlases using statistical parametric 
mapping (IBASPM) were used for volumetric analysis of 
brain MRIs utilized, an extension of SPM-5. The calculation 
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of the brain structure was performed as follows: 1) MRIs 
were segmented into grey matter, white matter and  
CSF, using IBASPM segmentation, 2) MRI scans were  
spatially transformed into Montreal Neurological Institute  
(MNI) space, using affine transformation for approximate 
registration and non-linear transformation for fine 
registration to obtain the transformation parameters 
(Shaikh and Ali, 2019). Then two different feature 
reduction phases were used in the proposed scheme by 
inheriting the best of both filter and wrapper feature 
extracting approaches. Given that some features were 
uninformative, irrelevant or redundant for classification, 
reducing the number of features not only speed up 
computation but also improve classification performance. 
Therefore, an initial feature selection step was adopted. 
The feature ranking approach has been widely used in 
feature selection. In this study, the F-score method was 
employed for feature ranking followed by feature reducing 
techniques for extraction of optimal feature vector space 
for model training. 
 
2.3 Quality assessment 
The given examination employed the accompanying 
quality evaluation strategies to show the adequacy of the 
proposed CAD framework.  
• Accuracy: accuracy is the ratio of right expectations 

partitioned by the absolute number of forecasts. It is 
characterized as the capacity of the classifier to choose 
all cases that require to be chosen and reject all cases that 
require to be dismissed (Nisbet et al., 2009; Shaikh et al., 
2020). 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                     (1) 

where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative. 
• Sensitivity: sensitivity is actually the accuracy of positive 

cases, i.e., how good a test is in detecting positive disease. 
It is the capability of a model to pick all the cases that are 
essential to be picked.  

      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 = 𝑅𝑅𝑆𝑆𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝐻𝐻𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 
      𝑇𝑇𝐴𝐴𝐴𝐴𝑆𝑆 𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 (𝑇𝑇𝑇𝑇𝑅𝑅) = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
                         (2) 

• Specificity: specificity is actually the accuracy of negative 
cases, i.e., how likely patients without the disease can be 
ruled out correctly. It is the capability of a model to throw 
away all the cases that need to be rejected. 

  𝑆𝑆𝑝𝑝𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                      (3) 

• Area under receiver operating characteristics (AUROC): 
In a ROC curve, the TP rate is plotted against the FP rate. 
The values of the FP rate (1 – specificity or TN rate) is 
plotted on the horizontal axis and the TP rate values 
(sensitivity or recall) on the vertical axis.  

 𝐸𝐸𝐴𝐴𝐴𝐴𝑝𝑝𝐴𝐴 = 1 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

           (4) 

 
2.4 Proposed methodology 
The present segment of the projected classification 
organization designated the classification integration. 
Their foremost concern was for automatic computer-aided  

detection tools and techniques that enabled clinical 
specialists to discover signs of AD before it occurs. The new 
methodology would make it possible for clinical experts to 
view data continuously collected for the patients at risk or 
who have already been diagnosed with AD. 
 
2.4.1 Ensemble 
From a conceptual perspective, rather than a technical 
standpoint, the computerized diagnosis must focus on the 
fruitful arrangement of characteristics with the lowest 
possible error rates. A classifier that is fit for use in general 
cataloguing may not be useful for other types of feature 
representation. The machine learning models have a wide 
range of functionality, but their behaviours are quite 
different depending on what type of job they're applied to 
(Dietterich, 2000). Settling on an incorrect classification 
takes less time if there are fewer classifiers, proficiently 
making good decisions allows the cataloguing of data to be 
faster. Similarly, a classifier fusion probes from various 
starting states, helping to avoid exploratory local 
classifiers that may run into local minima. While the best 
classifier cannot be present at all times, a selection of 
classifiers can be constructed for ideal performance 
(Dietterich, 2000). 
       The model learning capability and generalization 
amplified by joining the consensus of multiple classifiers. 
When merging classifiers in parallel, the posterior class 
estimates become more accurate (Dai et al., 2015). Tree-
like classifier fusion analysis offers more accurate results 
using weighted averaging for real-time datasets (Dai et al., 
2015). This process has proved useful in different 
application, for, for example, documentation images. 
Juggling these results together reveals notable 
improvements in the classifiers' performance (Zheng et al., 
2017). 
       The goal of ensemble learning was to produce diverse 
base learners (weak classifiers) and integrate their 
performance on all datasets in order to create a more 
accurate yield on the whole. While there are many 
ensemble techniques in the literature, they all need to 
grapple with the issues of training the base learners and 
merging the results of the numerous base learners. 
Ensembles with values of 50% or more excellent must 
have precision (Li et al., 2012). When classifying results 
were computed, voting or averaging were employed, 
respectively.  
       A module known as "combiner" is expected to amass 
the classifiers together in the second stage after the choice 
of specific base-level classifiers gets matured in the initial 
stage. The combination rule decides the compatibility in 
the working of the base-level classifiers. The presented 
merging strategy is implemented by a means of a parallel 
architecture because of its straightforwardness, less 
computational time, and furthermore higher certainty 
level (Eom et al., 2019). The literature represents two 
standard rules for consolidating: 1) fixed combining rules, 
2) trained combining rules (Lebedev et al., 2014). Table 2 
shows a list of fundamental fixed joining rules. Trained 
combining rules, on the other hand, train a discretionary 
classifier utilising all the training data in the moderate 
space. Here, the classifiers were typically trained as a 
yield classifier, using a similar training data set. The 
posterior probabilities were straightforwardly utilized 
for the structure of the moderate space (Lebedev et al., 
2014)
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Table 2.  List of the fixed combining rules 
 

Number Combining rules Description 
1 Median and mean Both averages the posterior probability estimates, thereby reducing the estimation error 
2 Product Work by taking the product of posterior probabilities of each classifier 
3 Maximum Selects the outcome of the classifier producing the highest estimated confidence, which seems to 

noise-sensitive 
4 Minimum Selects the outcome of the classifier that has the least objection against a certain class 
5 Majority voting Counts the vote for each class over the input classifiers and selects the majority class 

 
2.4.2 A classifier merger approach to progress 
the early uncovering of AD  
Principle steps that create an ensemble learning procedure 
for ADNI benchmark data cataloguing for AD diagnosis are 
as follows (Talia et al., 2016): 
1. Initially, the benchmark ADNI dataset is recognized as 

a biomarker to perceive the incidence of AD, which is 
then fragmented into respective training and test sets. 

2. The 𝑆𝑆 classification algorithms that synchronously run  

on diverse computation units to shape 𝑆𝑆 autonomous 
models are fed with the training set. 

3. A voter tool 𝑆𝑆 entrees the 𝑆𝑆 models so as to achieve an 
ensemble cataloguing by conveying every test set instance 
the label projected by the majority of the 𝑆𝑆 models. 

Figure 1 displays the proposed classifier merging approach. 
Our proposed strategy gave a potential plan that clarified 
how the plan objectives have been consolidated inside the 
plan and feature the curiosity of our methodology.

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A classifier merger approach 
 
2.4.3 Feature classification  
The compulsory feature sets for correct AD identification 
were offered by the benchmark ADNI dataset designated in 
the above section. This dataset was utilized to choose a 
classifier, train it, test it, assess the outcome to decide 
whether the right arrangement was achieved. The 
calculation was legitimately corresponding to the quantity 
and quality of the features considered in the dataset. Various 
dissimilar classifiers have been explored using a specific 
feature vector so as to assess the best among the lot for the 
final classifier merging process. Among the linear classifiers, 
BayesNet (probabilistic algorithm), stochastic gradient 
descent (SGD), Fisher's (fishrerc), J48 (decision tree 
algorithm), RepTree (decision tree algorithm), and nearest 
means (nmc) were considered, while as a quadratic 
discriminant classifier (qdc), linear discriminant classifier 

(ldc), and the quadratic Bayes normal classifier (udc) were 
employed for density-based classification, and finally, kernel 
support vector machine (KSVM), simple logistic (SL), 
multilayer perceptron  (MLP), and iBK (instance-based 
learning) were chosen from the set of non-linear classifiers. 
       A linear classifier forecasts the class tags grounded on 
a weighted linear amalgamation of features or the pre-
defined variables. Figure 2 shows the classification 
accuracy of classifiers on the ADNI dataset. Here, the 
confusion matrix procedure was employed to govern the 
spreading of errors across all classes. Among the linear 
classifiers, the BayesNet acquired the best results followed 
by SGD, Fisherc, nmc, RepTree. Similarly, in the density-
based classification group, udc achieved the best accuracy 
value of 76.13%. Finally, among non-linear classifiers, 
KSVM topped the list with an accuracy value of 76.13%. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Classification accuracy of classifiers tested 
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2.4.4 Fusion classifier selection  
The four best accomplishing classifiers from the above 
mentioned were encompassed in the final classifier 
merging plan. The final classifier fusion was grounded on 
the amalgamation of these four top-performing classifiers. 
The complete scenario with simulated results gained 
throughout the assessment of the ADNI dataset using the 
thirteen base-level classifiers is depicted in Figure 3. A 
single array held the results attained from the four topmost 
performing classifiers, and their error rates were 
calculated.  
 
2.4.5 Implementation  
The individual base-level classifiers and the classifier 
merging policy was realized via Weka (Version 3.7) and 
MATLAB R2019b. Initially, the computation commenced 
by distributing the ADNI dataset into three classes, viz AD, 
MCI, and healthy control (HC) (Figure 4). A specific label 
was allocated to each and every class (1 for AD, 2 for MCI, 
and 3 for HC), and the dataset was randomly fragmented 
into two equal parts; 70% for training the classifier and 
the rest 30% for testing. An array (w) = [w1, w2, w3, w4] 
was created which comprises combination of the four 
untrained classifiers (w1 = BayesNet, w2 = ldc, w3=udc, 
and w4 = KSVM) without rules. A cell array (v) 
encompassing the trained classifiers was formed by the 

concurrent training of a set of untrained classifiers 
consuming the training dataset. 
       The amalgamation of the optimal performing base-
level classifiers into a cell array consuming a set of fixed 
combining rules and their performance outcomes on the 
unseen test datasets is depicted in Figure 5. The specified 
work accomplished the examination of the ensemble on six 
different rules were; mean selection (meanc), median 
selection (median), product combiner (prodc), maximum 
selection (maxc), minimum selection (minc), and voting 
selection (votec). The assessment of a cell array of trained 
classifiers (v) and the untrained classifiers united with 
rules (vc) was completed by testing the (testset) set. The 
performance outcomes displayed by the top four classifiers 
are deposited in a single array, and their error rates were 
calculated, which came to be 0.2523 in BayesNet, 0.2838 in 
ldc, 0.2224 in udc, and finally 0.2387 in the KSVM case. The 
mean error rate for these four classifiers was 0.2493. The 
same four classifiers are then merged into a cell array 
exhausting six different rules, and their error rates were 
calculated which came to be 0.2537 in mean, 0.2612 in the 
median, 0.2131 in the product, 0.1809 in maximum, 0.2021 
in case of minimum, and finally 0.1631 in case of voting. 
The mean error rate for the combined classifiers was 
0.2123, which was less than the mean error rate of the 
base-level classifiers.

Figure 3. Performance evaluation of feature organisation by base-level classifiers and fusion approach 
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Figure 4. Concurrent training of a set of four base-level classifiers 

Figure 5. Combing base-level classifiers 
 
 
3. RESULTS AND DISCUSSION 
 
To assess the viability of our strategy, a few examinations 
utilizing the pointers referenced previously. ADNI dataset 
utilized in this paper contained a total of 668 subjects with 
146 AD (21.86%) cases, 336 MCI (50.30%) cases, and 186 
CN (27.85%). The investigations were performed in 
MATLAB R2019b, and WEKA toolkit on a computer system 
fortified with Intel Core i5-4590 with 3.30GHz, RAM of 8GB 
and 64-Bit operating system. 
              The proposal was validated on the benchmark 
ADNI dataset using various different evaluation 
parameters. Initially, the "testc" routine of the MATLAB 
was employed for carrying out the validation estimations 
for the trained classifier on a test dataset. Figure 6 depicts 
the performance of the top-performing standalone 
classifiers and classier merging strategy using accuracy, 
error rate, and AUC as the evaluating metrics. The four best 
accomplishing classifiers BayesNet, ldc, udc, and KSVM 

delivered the greatest results from the thirteen classifiers 
tested with their accuracy 74.77%, 71.62%, 77.76%, and 
76.13%, respectively. The ensemble method decorated 
from the same four algorithms yielded an accuracy of 
74.63% in mean, 73.88% in the median, 78.69% in the 
product, 81.91% in maximum, 79.79% in minimum, and 
lastly 83.69% in voting case (Figure 6). Clearly, the results 
in the classifier fusion methodology got enhanced than the 
standalone cases. The mean error rate of 0.2493 was 
generated by the standalone trained classifiers on the 
concealed test dataset. In contrast, the classifier merging 
strategy generated a mean error value of 0.2123 using 
different combining rules. The results clearly indicated the 
classifier merging approach (using combining rules) 
accomplishes improved performance values than the 
individual classifiers by 0.037 reductions in mean error 
rate. Additionally, the voting combination rule achieved 
the best overall results than other combining rules used 
(Figure 6). 
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Figure 6. Performance analysis of classifier merging strategy using various evaluation parameters 

 
       Since the accuracy metric could be deceptive when the 
data were imbalanced, which was mainly the case in the 
medical domain, credit card fraud, etc. The outcomes 
proposed that model assessment measurements might 
uncover more about the appropriation of classes than they 
did about the genuine exhibition of models when the 
information was imbalanced because the model converged 
towards the majority class. So, to enhance the subjectivity 
of the proposal, the TP rate and FP rate and validated the 
same using AUC from receiver operating characteristics 
(ROC) were computed (Figure 7).  
       Figure 7 demonstrates the performance values of the 
classifier merging strategy utilizing several combining rule 
algorithms that embrace mean, median, product, 
maximum, minimum and voting. The finest outcomes were 
returned by the "voting combiner" with a value of 16.31% 
error rate. This was meticulously trailed by the "maximum 
combiner," with a value of 18.09%, followed by "minimum 
combiner" with a value of 20.21%, followed by "product 
combiner" with a value of 21.31%, followed by "mean 
combiner" with a value of 25.37%, and finally by "median 
combiner" with an error rate of 26.12%. The TP rate and 
FP rate values were calculated on the individual top four 
algorithms and then on various classification merging 

strategies. BayesNet algorithm got an accuracy of 74.77% 
and AUC of 0.856, ldc accomplished an accuracy of 71.62 
and AUC of 0.811, udc with an accuracy of 77.76 and AUC 
of 0.916, and KSVM with an accuracy of 76.13 and AUC of 
0.904. Similarly, the parameter values of other ensemble 
algorithms using various merging strategies were 
calculated. 
       The ensemble of the top four algorithms (BayesNet, ldc, 
udc, KSVM) with mean as the merging approach acquired 
an accuracy of 74.63 and AUC of 0.841. In the same way, 
the median merging approach acquired an accuracy of 
73.88 but with the lowest AUC of 0.772. The product 
merging strategy obtained an accuracy of 78.69 and AUC of 
0.933, the minimum combining strategy with an accuracy 
of 79.79 and AUC of 0.919. The second highest AUROC 
value of 0.946 was yielded by the ensemble of four 
algorithms with a maximum of probabilities as parameter 
setting and represented at number seven in ROC curve, and 
finally, the voting merging strategy topped the list with an 
accuracy value of 83.69 and AUC of 0.959 and made it the 
highest yielded AUC among the lot. Also, the ROC curve of 
the said ensemble was nearer to the upper left corner 
(Number 8), which again justified it being the best 
performer (Figure 7). 

Figure 7. ROC analysis of the classifier merging strategy
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       The values of TP rate, FP rate and AUC definitely 
revealed the worthiness of the proposed method as 
compared to their individual counterparts. Similarly, the 
combinations for various methods and algorithms with 
diverse other parameter settings favor the clinical 
significance of ensemble methods for AD detection upon 
validating with various parameters. 
 
 
4. CONCLUSION 
 
Neuroimaging results realized an original classifier fusion 
idea for the use of which was to help in diagnosing AD. 
Initially, the base classifiers from diverse areas of machine 
learning on the ADNI dataset were examined. The four 
best-performing models had all experienced a drop in 
performance. The four best performing models were caught 
viz. BayesNet, ldc, udc, and KSVM, and ensembled to deliver a 
brilliant classifier combining plan. The six different combiner 
selection techniques were utilized to plan classifier groups. In 
the study it is found that the accuracy rate of fusing classifiers 
with consolidating rule was more noteworthy than joining 
the base-level classifiers with no standard normal classifier 
accuracy. The outcomes were better than one-by-machine 
learning. Optimality, combined with greater classificatory 
freedom, offers enormous potential for future applications. 
Future directions for the multidimensional analysis for 
disease diagnosis are nearly limitless. 
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